'Point Set Surfaces' implementation 2

Yi Yong-il

Projection procedure

- Reference domain
 - Find a local reference plane 'H' for 'r'
 - Minimize a local weighted sum of square distances of 'p' to the plane
- Local map
 - Compute a local bivariate polynomial approximation to the surface

Revision – reference domain

• minimizatio
$$\sum_{i=1}^{N} \langle n, p_i - r - tn \rangle^2 \theta \left(\|p_i - r - tn\| \right)$$
 $\min_{\|n\|=1} n^T \mathcal{B} n$

- At first, get the Eigenvector of $b_{jk} = \sum_{i} \theta_i (p_{ij} r_j) (p_{ik} r_k)$. that corresponds to the smallest Eigenvalue
 - We can get initial normal 'n'
- And then get the 't' for the initial normal 'n'
- At second, execute powell iteration for 'n'
 - 't' is fixed
 - There are many local minimum. We have to find the one that has smallest 't'

- Old version, teapot(131330 vertices), 80 nearest points
 - About 174 secs
 - There are some errors

- New version, teapot(131330 vertices), 80 nearest points
 - About 99 secs => much faster
 - Better quality

- Old version, too noisy model(167424 vertices), 80 nearest points
 - About 260 secs

- New version, too noisy model(167424 vertices), 80 nearest points
 - About 119 secs, better quality

- New version, too noisy model(167424 vertices), 400 nearest points
 - For better quality, it needs more nearest points
 - about 645 secs

- New version, too noisy model(167424 vertices), 400 nearest points, larger H value(1.0)
 - Needs to adjust several parameters
 - About 632 secs

Further work

- New data structure
 - Use grid
 - Neglect distance 'd' => distance that weight function becomes zero
 - Grid cell size is 2*d, so a maximum 8 cells is needed
 - Each cell is organized as an Octree
 - Leaf nodes contain nearest points 'p'
 - Inner nodes contain some information
 - Number of points in the subtree
 - Centroid of the subtree
 - If the nodes's dimension is much smaller than its distance to 'r', the centroid is used for computing the coefficients
 - Whole nodes can be neglected if the distance is larger than 'd'
 - when you get the nearest points, include 'r' itself