‘Point Set Surfaces’
implementation 2

Yi Yong-il




Projection procedure

» Reference domain
Find a local reference plane "H’ for r’
Minimize a local weighted
sum of square distances
of 'p’ to the plane

» Local map
Compute a local bivariate
polynomial approximation
to the surface




Revision — reference domain

» MINIMIZAtIO S n pi = — tn)26 (Jpi — 7 — tal) min n? Bn
i=1

e =1

» At first, get the Eigenvector of z:=2¢(z,-7) (2,-7)-
that corresponds to the smallest tigenvalue

We can get initial normal 'n’

» And then get the ‘t’ for the initial normal 'n’
't isin —-H/2 ~ H/2

» At second, execute powell iteration for ‘n’
't is fixed

There are many local minimum. We have to find the
one that has smallest ‘t’



Result

» Old version, teapot(131330 vertices), 80 nearest
points
About 174 secs
There are some errors




Result

» New version, teapot(131330 vertices), 80 nearest
points
About 99 secs => much faster
Better quality




Result

» Old version, too noisy model(167424 vertices),
80 nearest points
About 260 secs




Result

» New version, too noisy model(167424 vertices),
80 nearest points

About 119 secs, better quality




Result

» New version, too noisy model(167424 vertices),
400 nearest points

For better quality, it needs more nearest points
about 645 secs




Result

» New version, too noisy model(167424 vertices),
400 nearest points, larger H value(1.0)
Needs to adjust several parameters
About 632 secs




Further work

» New data structure
Use grid

Neglect distance ‘d’ => distance that weight function
becomes zero

Grid cell size is 2*d, so a maximum 8 cells is needed

Each cell is organized as an Octree
Leaf nodes contain nearest points ‘p’

Inner nodes contain some information
Number of points in the subtree
Centroid of the subtree

If the nodes’s dimension is much smaller than its distance to ‘r’,
the centroid is used for computing the coefficients

Whole nodes can be neglected if the distance is larger than ‘d’
when you get the nearest points, include r’ itself



